Math Question (equal weight each part)

Part 1

(a) Find the inverse of

\[
M = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}.
\]

(b) Use the inverse to find \(x \) if

\[Mx = b \]

where

\[b = \begin{bmatrix} 8 \\ 4 \end{bmatrix}. \]

Part 2

Find all solutions for \(x \) and \(\lambda \) to the following equation

\[Nx = \lambda x \]

where

\[N = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}. \]

Part 3

Find all steady-state solutions for \(x(t) \) and \(\lambda \) to the following equation

\[Rx(t) = \lambda x(t) \]

where \(R \) is the derivative operator given by

\[R = \frac{d^2}{dt^2} - 4 \frac{d}{dt} + 6 \]