A 50-Ω lossless line is terminated with a load impedance \(Z_L = (50+j50) \Omega \).

(a) Calculate \(\Gamma \) and \(S \).

(b) Find a value for \(l_{max} \) where there is the first voltage maximum assuming a wavelength \(\lambda \) of the signal.

c) Calculate the input impedance for the transmission line of length \(l_{max} \).

d) Now add a second transmission line of length \(l_1 \) and impedance \(Z_{0,1} \). Choose values for \(l_1 \) (in terms of \(\lambda \)) and impedance \(Z_{0,1} \) so that the input impedance at point C would match a 50-Ω transmission line.

e) Assuming that the two transmission lines shown in (d) are connected to a 50-Ω transmission line that is connected to a signal generator (\(Z_g = 50 \Omega \) and \(V_g = 10 \) V), how much power is being delivered to the load?