MS exam, ECE 107

Consider a lossless transmission line of characteristic impedance \(Z_0 = 50 \Omega \). The frequency of operation is 1GHz.

1) A load with impedance \(Z_L \) terminates the transmission line at \(z = 0 \). The load consists of a resistor \(R_L \), capacitor \(C_L \), and inductor \(L_L \) connected in series. Give an expression for the reflection coefficient.

2) The capacitance of the capacitor is given as \(C_L = 20 \text{pF} \).
 a. Find combinations of \(R_L \) and \(L_L \) that lead to the reflection coefficients \(\Gamma = 0 \) or \(\Gamma = -1 \) (one combination for each \(\Gamma \)).
 b. Find combinations of \(R_L \) and \(L_L \) that lead to the reflection coefficients \(\Gamma = -0.5 \) or \(\Gamma = 0.5 \) (one combination for each \(\Gamma \)).
 c. Find a combination of \(R_L \) and \(L_L \) that leads to the reflection coefficients \(\Gamma = e^{i\pi/3} \) (i.e. \(|\Gamma| = 1 \) and \(\arg(\Gamma) = \pi/3 \)).

3) Now, the load impedance \(Z_L \) is matched to the characteristic impedance of the transmission line. The phasor voltage at the location \(z = 0 \) is given by \(\tilde{V}(0) = 5e^{j\pi/6} \text{V} \). Give expressions describing the voltage and current in this transmission line in the form of phasors and in the time domain representation.